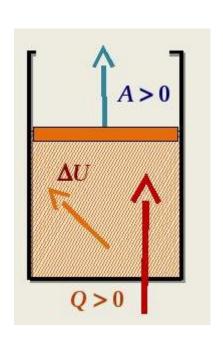
Тема лекции:

Первый закон термодинамики

Внутренняя энергия, теплота и работа

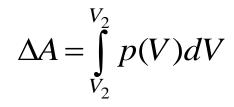


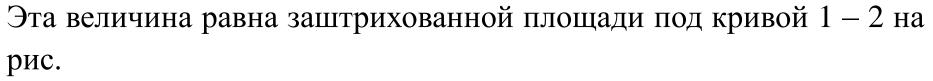
Поставим следующий вопрос: как можно изменить внутреннюю энергию идеального газа?

- 1. Можно *при постоянном объеме* V сообщить газу определенное количество теплоты при непосредственном контакте с телом, имеющим другую температуру, при этом: $dW_{\text{внутр}} = dQ$. Ясно, что количество теплоты dQ может быть как отрицательным, так и положительным (охлаждение или нагрев газа).
- 2. Можно создать условия, при которых газ совершает работу, в результате чего увеличится или уменьшится кинетическая или потенциальная энергия каких-либо макроскопических тел. При движении поршня (см. рис.) изменяется его потенциальная энергия.

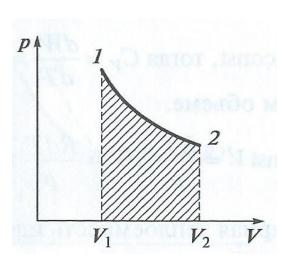
Работа в термодинамике

При перемещении поршня на dx совершается работа dA = Fdx = pSdx = pdV, при конечном изменении объема от V_1 до V_2





Газ совершает работу, и поэтому в соответствии с законом сохранения энергии его внутренняя энергия должна изменяться $dW_{\text{внутр}} = -dA = -pdV.$



Первый закон термодинамики

Таким образом, возможные изменения внутренней энергии идеального газа связаны либо с полученным (отданным) количеством теплоты, либо с совершенной газом работой:

$$dW_{\text{BHYTP}} = dQ - dA = dQ - pdV.$$

Это первый закон термодинамики — закон сохранения энергии с учетом тепловых процессов:

Изменение внутренней энергии системы при переходе системы из одного состояния в другое равно количеству теплоты, переданного системе, за вычетом совершенной системой работы.

Молярная теплоемкость

Если одному молю идеального газа сообщается некоторое количество тепла dQ, то изменяется его внутренняя энергия $dW_{\text{внутр}}$, и температура повышается — от T до T + dT. Количество тепла, необходимое для нагревания системы на один градус, определяется ее молярной **теплоемкостью**: $C = \frac{dQ}{dT}$. Из первого закона термодинамики следует, что величина теплоемкости зависит от условий, при которых системе сообщается теплота, поскольку dW = dQ - dA = dQ - pdV, и $C = \frac{dQ}{dT} = \frac{dW}{dT} + p\frac{dV}{dT}$, Ho $W = \frac{i}{2}RT$, Поэтому $C = \frac{i}{2}R + p\frac{dV}{dT}$

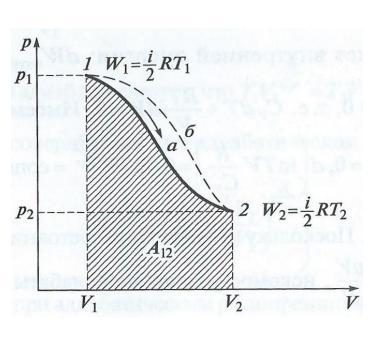
Уравнение Майера

Из последней формулы следует, что теплоемкости идеального газа при постоянном объеме и постоянном давлении различны.

- 1. Пусть V = const, тогда $C_V = \frac{dW}{dT} = \frac{i}{2}R$ молярная теплоемкость при постоянном объеме.
- постоянном объеме. 2. При p=const $V=\frac{RT}{p}$, $dV=\frac{RdT}{p}$ и $C_p=\frac{dW}{dT}+p\frac{R}{p}\frac{dT}{dT}=\frac{i}{2}R+R=\frac{i+2}{2}R$ молярная теплоемкость идеального газа при постоянном давлении

Из пп. 1 и 2 следует, что разность $C_p - C_V = R$ (уравнение Майера).

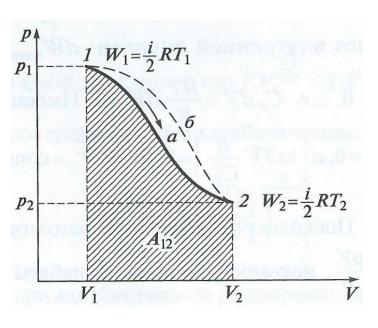
Равновесные процессы в идеальном газе



Речь будет идти о равновесных изменениях состояния идеального газа. Это значит, что изменения состояния происходят так медленно, что в каждый момент времени газ остается полностью однородным, и для него выполняется уравнение состояния $(pV = RT \, dля \, odного \, moля \, rasa)$.

Равновесные процессы обратимы, то есть могут быть проведены в прямом и в обратном направлениях через те же состояния. Мы будем изображать эти процессы на диаграмме p - V (см. рис.).

Равновесные процессы в идеальном газе

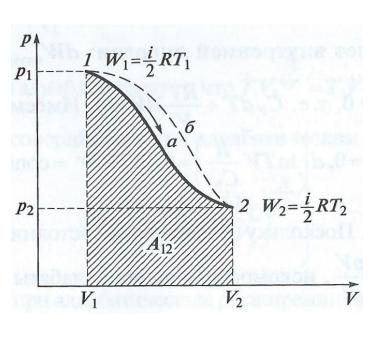


Пусть система переходит из состояния p_1 , V_1 , T_1 в состояние p_2 , V_2 , T_2 , совершая работу и обмениваясь теплом с другими системами. При этом ее внутренняя энергия изменяется:

$$W_{\text{\tiny BH}}^{(2)} - W_{\text{\tiny BH}}^{(1)} = \frac{i}{2}R(T_2 - T_1)$$

Эта разность определяется только температурами исходного и конечного состояний и не зависит от «траектории» перехода из одного состояния в другое (на рис. представлены две возможные траектории: 1a2 и 1б2).

Внутренняя энергия как функция состояния



Поскольку из первого закона термодинамики следует, что

$$\int_{1}^{2} dW = \int_{1}^{2} dQ - \int_{1}^{2} dA$$
 имеем $W_{\text{внутр}}^{(2)} - W_{\text{внутр}}^{(1)} = \int_{1}^{2} dQ - \int_{1}^{2} p dV = const$

Поэтому можно утверждать, что:

- 1. $W_{\text{внутр}}$ однозначная функция состояния системы.
- 2. $\Delta A = \int p dV$ зависит от траектории это площадь под кривой p = p(V).
- 3. Следовательно, ΔQ тоже зависит от траектории перехода из состояния 1 в 2 на p-V диаграмме. Таким образом величины ΔA и ΔQ не являются функциями состояния, а зависят от того, по какой траектории на p V диаграмме осуществляется переход из состояния 1 в состояние 2.

Адиабатический процесс

При адиабатическом процессе, система не обменивается теплом с окружающими телами, то есть dQ=0. Поэтому $dW_{\rm внутр}=dQ-dA=-dA=-pdV$. Это означает, что работа, совершается за счет изменения внутренней энергии системы. Найдем связь между объемом и давлением для адиабатического процесса. Работа совершается за счет внутренней энергии: $dW_{\rm внутр}=\frac{i}{2}RdT=-pdV$, или $C_VdT+pdV=0$, то есть $C_VdT+\frac{RT}{V}dV=0$. Имеем

$$\frac{dT}{T} + \frac{R}{C_V} \frac{dV}{V} = 0 \quad d \left(\ln T + \frac{R}{C_V} \ln V \right) = 0 \quad d \left(\ln T V^{\frac{R}{C_V}} \right) = 0 \quad \ln T V^{\frac{R}{C_V}} = const$$

Отсюда следует, что $TV^{\frac{K}{C_V}} = const$

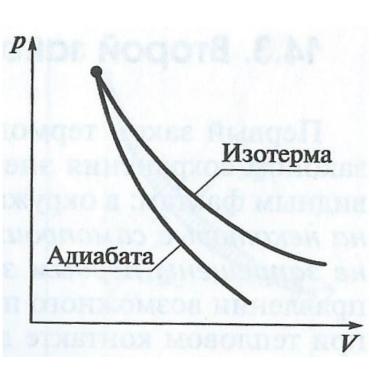
Адиабатический процесс

$$TV^{\frac{R}{C_V}} = const$$

Поскольку из уравнения состояния идеального газа следует, что $T = \frac{p \, v}{R}$ искомое уравнение адиабаты получаем в виде

$$pV^{\frac{C_p}{C_V}}=const$$
 или $pV^{\gamma}=const$. Здесь $\gamma=\frac{C_p}{C_V}$ - показатель адиабаты.

Изотермический и адиабатический процессы



Легко показать, что, если изотерма и адиабата выходят из одной точки на p-V диаграмме, адиабата пойдет «круче» изотермы, как это показано на рис. Действительно, дифференцируя по объему уравнения изотермы и адиабаты, находим:

$$p+V \frac{dp}{dV}=0, \frac{dp}{dV}=-rac{p}{V}$$
 изотерма
$$rac{C_p}{C_V} V^{rac{C_p}{C_V}-1} p+V^{rac{C_p}{C_V}} rac{dp}{dV}=0, rac{dp}{dV}=-rac{C_p}{C_V} rac{p}{V}$$
адиабата Поскольку $rac{C_p}{C_V}>$ 1 для любого V

$$\left\| \left(\frac{dp}{dV} \right)_{\text{алиабата}} \right\| > \left\| \left(\frac{dp}{dV} \right)_{\text{изотерма}} \right\|$$
 что и требовалось доказать.

Работа при изотермическом процессе

Для изотермического процесса, проходящего для одного моля газа в сосуде, помещенном в термостат, имеющем температуру T_0 , уравнение изотермы $pV=RT_0$ внутренняя энергия $W_{\text{внутр}}=\frac{i}{2}RT_0=\text{const}$, так, что dW=dQ-dA=0 и dQ=dA, то есть работа при расширении газа совершается за счет тепла, получаемого системой из термостата; при изменении объема от V_1 до V_2 совершается работа

$$\Delta A = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{dV}{V} RT_0 = RT_0 \ln \frac{V_2}{V_1}$$

При изотермическом процессе происходит превращение в работу энергии хаотического теплового движения молекул термостата.

Работа при адиабатическом процессе

Определим работу, производимую идеальным газом при адиабатическом расширении — изменении объема от V_1 до V_2 ; температура в исходном состоянии T_1 . Имеем dQ=0, dA=pdV= — dW= — $C_V dT$. Следовательно, искомая работа

$$\Delta A = -\int\limits_{T_1}^{T_2} C_V dT = C_V \left(T_1 - T_2\right) = C_V T_1 \left(1 - \frac{T_2}{T_1}\right)$$
 Из уравнения адиабаты следует, что $T_1 V_1^{\frac{R}{C_V}} = T_2 V_2^{\frac{R}{C_V}}$ и $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\frac{R}{C_V}} = \left(\frac{V_1}{V_2}\right)^{\gamma-1}$

Отсюда работа, совершаемая при адиабатическом процессе

$$\Delta A = C_V T_1 \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right)$$

Второй закон термодинамики

Первый закон термодинамики, который по существу является законом сохранения энергии, не дает объяснения некоторым очевидным фактам: в окружающей нас природе имеется как бы запрет на некоторые самопроизвольно протекающие процессы, которые не запрещены первым законом термодинамики. Речь идет о направлении возможного протекания тепловых процессов. Так, например, при тепловом контакте двух систем, находящихся при разных температурах теплота всегда переходит от тела, более нагретого к телу, менее нагретому, и мы рассматриваем это как само собой разумеющееся событие.

Второй закон термодинамики

Одна из формулировок второго закона термодинамики такова:

Невозможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому. Однако такой процесс в принципе, мыслим, так как не противоречит закону сохранения энергии. *Но он противоречит* второму закону термодинамики, который охватывает свой собственный круг явлений.

Проведем мысленный эксперимент. Пусть некоторый объем разделен на две половины непроницаемой перегородкой, и в одной половине емкости находится газ, а в другой — вакуум. Если убрать перегородку, то, при переходе к равновесию газ равномерно распределится по всему объему. Однако самопроизвольный процесс «возвращения» всех молекул газа в ту половину, где они находились до удаления перегородки, невозможен, противоречит здравому смыслу! Но почему он невозможен? Запрет на такой процесс накладывает второй закон термодинамики.

Второй закон термодинамики. Энтропия

Второй закон термодинамики состоит из двух частей:

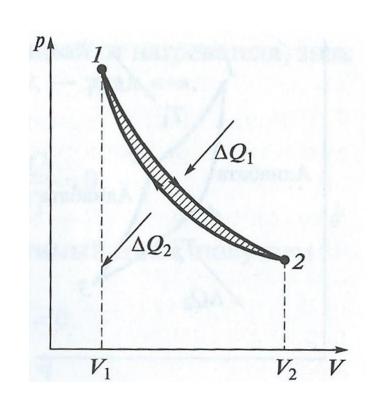
- 1. У любой термодинамической системы помимо внутренней энергии имеется еще одна однозначная функция состояния энтропия S, изменение которой dS равно dQ/T, когда система получает количество теплоты dQ при температуре T.
- 2. В изолированной неравновесной системе все процессы протекают таким образом, что энтропия возрастает, достигая максимума в состоянии равновесия.

Исторически осмысление феномена энтропии происходило на фоне анализа работы *тепловых машин – устройств, с помощью которых можно непрерывным образом превращать тепловую энергию хаотического теплового движения молекул в механическую энергию макроскопических тел – потенциальную или кинетическую.*

Энтропия. Циклический процесс

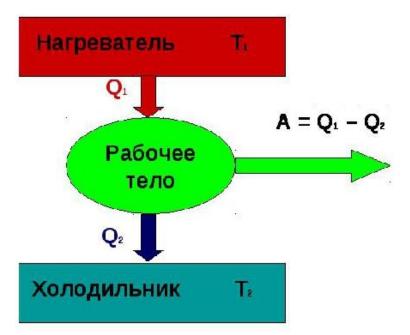
Мы уже видели примеры, показывающие такое, но однократное преобразование — это изотермическое расширение газа, когда; dQ = dA, $\Delta A = RT_0 \ln \frac{V_2}{V_1} = \Delta Q_0$ — совершаемая работа равна теплоте, получаемой от термостата. Но если мы хотим получать работу непрерывно, то есть при циклических изменениях состояния системы $1 \to 2 \to 1 \to 2$ и т.д., и работа за каждый цикл будет $\Delta A = \Delta A_1 - \Delta A_2 = \Delta Q_1 - \Delta Q_2 = 0$, где $\Delta Q_1 - \Delta Q_2 = 0$ теплота, полученная системой от термостата в ходе процесса $1 \to 2$, ΔQ_2 - теплота, отданная термостату при возвращении системы в исходное состояние $2 \to 1$. Никакой полезной работы за цикл, проведенный при постоянной температуре термостата $T = T_0$ система произвести не может.

Энтропия. Циклический процесс



Для того, чтобы была произведена полезная работа, необходимо, чтобы сжатие газа происходило при более низкой температуре, чем расширение. Если температура при сжатии будет ниже, то при V = constдавление р также будет ниже, кривая обратного хода пойдет ниже кривой прямого хода, суммарная работа $\Delta A = \Delta A_1 - \Delta A_2 = \Delta Q_1 - \Delta Q_2$ будет равна площади цикла (заштрихованной части на рис.). Таким образом, для того, чтобы непрерывно получать полезную работу с помощью тепловой машины, нужно иметь два термостата – нагреватель и холодильник, имеющих разную температуру.

Второй закон термодинамики. Тепловая машина



Отсюда следует еще одна формулировка второго закона термодинамики:

Невозможна циклически работающая машина, полностью преобразующая получаемую теплоту в полезную работу.

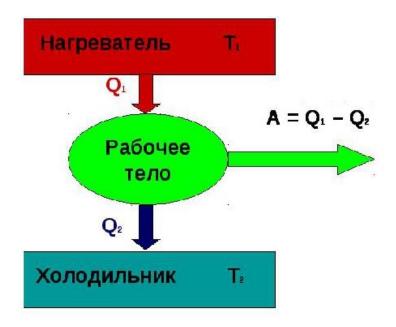
Если же нагреватель отдает рабочему телу теплоту ΔQ_1 , часть ее идет на совершение тепловой машиной полезной работы ΔA , а другая часть ΔQ_2 отдается холодильнику; полезная работа, совершаемая за цикл $\Delta A = \Delta Q_1 - \Delta Q_2$. На рис. показана принципиальная схема такой тепловой машины.

Тепловая машина. КПД

Эффективность преобразования тепловой энергии в работу определяется величиной коэффициента полезного действия (КПД)

$$\eta = \frac{\Delta A}{\Delta Q_1} = 1 - \frac{\Delta Q_2}{\Delta Q_1}$$

и эта величина не может быть равной единице.



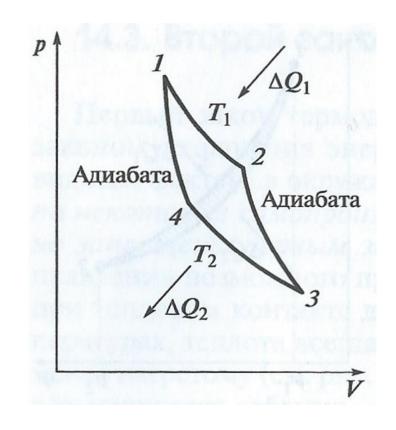
Теорема Карно

Более того, существует еще более сильное утверждение (теорема Карно):

Любая тепловая машина, работающая при заданных температурах нагревателя T_1 и холодильника T_2 , не может иметь КПД больше, чем

$$\eta_{\text{max}} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

Карно получил этот фундаментальный результат на основе анализа работы полностью обратимой тепловой машины, рабочий цикл которой состоит из двух изотерм и двух адиабат.

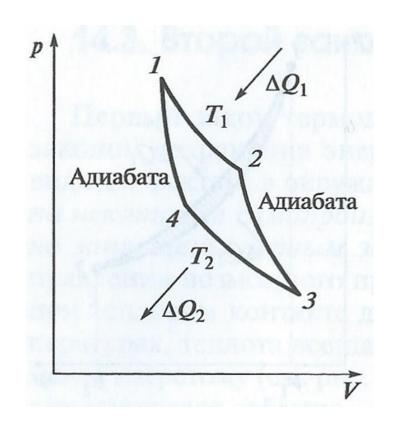


Цикл Карно

На рисунке изображен цикл Карно тепловой машины, работающей при температуре T_1 нагревателя и T_2 холодильника. Здесь:

- 1-2 изотермическое расширение газа при $T=T_1$;
- 2-3 адиабатическое расширение газа при начальной температуре T_1 и конечной T_2 (охлаждение);
- 3 4 изотермическое сжатие газа при $T = T_2$;
- 4-1 адиабатическое сжатие газа при начальной температуре T_2 и конечной T_1 (нагревание).

Цикл Карно. Приведенное количество теплоты



Особенность данного цикла - его можно осуществить полностью равновесным и обратимым образом, без конечных перепадов температур между рабочим телом — газом и термостатами.

При этом для такого цикла $\eta = \frac{\Delta Q_1 - \Delta Q_2}{\Delta Q_1} = \frac{I_1 - I_2}{T_1}$

$$-rac{\Delta Q_2}{\Delta Q_1} = -rac{T_2}{T_1}, -rac{\Delta Q_1}{T_1} = -rac{\Delta Q_2}{T_2}, rac{\Delta Q_1}{T_1} - rac{\Delta Q_2}{T_2} = 0$$
 Назовем величину $rac{\Delta Q}{T}$ приведенным

количеством теплоты.

Приведенное количество теплоты

Будем приписывать теплоте ΔQ_1 , полученной от нагревателя, знак «+», а теплоте ΔQ_2 , отданной холодильнику — знак «—». Тогда $\frac{\Delta Q_1}{T_1} + \frac{\Delta Q_2}{T_2} = 0$ или $\sum_{i=1}^2 \frac{\Delta Q_i}{T_i} = 0$

Обобщая этот результат на любой обратимый цикл, мы получаем

$$\sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} = 0$$
 или $\iint \frac{\Delta Q_i}{T_i} = 0$

Литература

Б.А. Струков, Л.Г. Антошина, С.В. Павлов. Физика. М., 2011, С. 125-133.

Видеоматериалы по теме лекции смотрите на сайте swcusp.ukit.me в разделе «видеоматериалы»:

«Первый закон термодинамики», «Что такое энтропия»

Тема следующей лекции: Энтропия и ее свойства